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Light reflectance by semi-infinite turbid media is modeled by a hybrid of Monte Carlo simulation and diffusion
theory, which combines the accuracy of Monte Carlo simulation near the source and the speed of diffusion the-
ory distant from the source. For example, when the turbid medium has the following optical properties—
absorption coefficient 1 cm™, scattering coefficient 100 cm™, anisotropy 0.9, and refractive-index-matched
boundary—the hybrid simulation is 7 times faster than the pure Monte Carlo simulation (100,000 photon pack-
ets were traced), and the difference between the two simulations is within 2 standard deviations of the Monte

Carlo simulation.

INTRODUCTION

In the field of laser—tissue interaction there is a growing
demand for accurate and fast models to predict theoreti-
cally the light distribution in turbid media, such as bio-
logical tissue, that have given optical properties’® and to
deduce inversely the optical properties from measurable
quantities.*®* One of the measurable quantities is diffuse
reflectance as a function of r, B;(r), where r is the dis-
tance between the observation and the incident points of
the laser beam on the medium surface and where diffuse
reflectance, in this paper, is defined as the photon proba-
bility of escape from inside a semi-infinite turbid medium
per unit surface area regardless of whether the photon
source is inside or outside. Measurement of reflectance
can be used to determine the optical properties of tissue
noninvasively.>” Therefore an efficient and accurate
model is needed to relate the reflectance and optical prop-
erties of a turbid medium.

Monte Carlo simulation®™ offers a flexible and accu-
rate approach toward photon transport in turbid media.
It can deal with complex geometries in a straightforward
manner and can score multiple physical quantities simul-
taneously. The accuracy of Monte Carlo simulation has
been tested experimentally. In this paper, Monte Carlo
simulation results are used as standards to be compared
with hybrid simulation results. However, because of its
statistical nature, Monte Carlo simulation usually re-
quires that a large number of photons be traced for accept-
able variance to be obtained; hence it is computationally
expensive, especially when the absorption coefficient is
much less than the scattering coefficient of the medium,
in which photons may propagate over a long distance be-
fore being absorbed.

Although diffusion theories® offer a fast approach to
approximating certain physical quantities of light trans-
port in turbid media, they are not valid near the photon
source or the boundary, where the photon intensity is
strongly anisotropic, thus violating the assumption of dif-
fusion theory. In therapeutic applications of lasers in
medicine, the photon fluence near the source is the site of
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the most intense laser-tissue interaction. This region
is where diffusion theory is most inaccurate. In diagnos-
tic and dosimetric measurements, such as the diffuse re-
flectance R,(r), the reflectance near the source is the
strongest and therefore can be more easily and more accu-
rately measured experimentally. Again, this region is
where diffusion theory is most inaccurate.

In this paper we describe a hybrid model of Monte Carlo
simulation and diffusion theory. The hybrid model
computes the diffuse reflectance of an infinitely narrow
photon beam normally incident upon a semi-infinite ho-
mogeneous turbid medium with given optical properties.
Although no photon beam is infinitely narrow, its re-
sponse can be convolved to compute the response of a
finite-sized photon beam.® Although the real tissue can
never be infinitely wide, it can be so treated on the condi-
tion that it is much wider than the spatial extent of the
photon distribution.

Monte Carlo simulation, while collecting some reflec-
tance R, (r) that is due to near-surface scatterings, is used
initially to propagate photons to sufficient depth into the
turbid media that diffusion theory can be applied with
good accuracy. Diffusion theory is then used to compute
the reflectance Rgyi(r) that is due to the distributed
source provided by the Monte Carlo step. The final re-
flectance Ry(r) will be the sum of the two reflectances.
The hybrid model combines the accuracy advantage of
Monte Carlo simulation and the speed advantage of diffu-
sion theory and is faster than pure Monte Carlo simula-
tion and more accurate than pure diffusion theory.

Flock et al."® presented a conceptually different hybrid
model in which a hybrid coupling function is determined
by a Monte Carlo calculation for each set of optical and
geometrical parameters. This coupling function is then
used to correct the computational results of diffusion
theory.

THEORY

The optical properties of a semi-infinite turbid medium
can be described with the use of four parameters: rela-
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Fig. 1. Illustration of the hybrid model. Z is the critical depth.
The last step size is 1 mfp'.

tive refractive index n., absorption coefficient w., scat-
tering coefficient u,, and the anisotropy factor g. The
relative refractive index n. is the ratio between the re-
fractive indices of the turbid medium and of the ambient
medium. The absorption coefficient u, is defined as the
probability of photon absorption per unit infinitesimal
pathlength, and the scattering coefficient u, is defined as
the probability of photon scattering per unit infinitesimal
pathlength. The anisotropy factor g is the average cosine
of the scattered angle, where the scattering of tissue is
well represented’® by a Henyey-Greenstein scattering
function.™

A cylindrical coordinate system is set up for this prob-
lem. The origin of the coordinate system is the point of
photon incidence on the medium surface, and the z axis
points downward into the turbid medium. The radial co-
ordinate and the azimuthal angle are denoted by r and 6,
respectively.

A separate study of diffusion theory’ and similarity re-
lations'®® conducted by our group (as yet unpublished)
has shown that the keys to using diffusion theory accu-
rately are the accurate conversion of the incident infi-
nitely narrow photon beam into deep {=1 mfp’, where
1 mfp = /[ + ps(1 — g)]} isotropic photon sources in
the medium and the fact that similarity relations can be
applied with good accuracy for deep photons (=1 mfp’).
Because of its high accuracy, Monte Carlo simulation is a
good candidate for solving this conversion problem. For
this paper, a critical depth Z, is defined and is chosen to
be 1 mfp’. Below Z, both diffusion theory and similarity
relations can be applied. The z = Z, plane is called the
critical plane.

The Monte Carlo simulation step is based on Prahl
etal.’® Because the implicit photon-capturing technique’
is used during the Monte Carlo simulation, a photon
packet with an initial weight 1 is launched perpendicular
to the surface along the z axis (Fig. 1). If the boundary
has the same refractive indices on both sides, all photon
weight enters the turbid medium; otherwise, only a por-
tion of the photon weight enters according to Fresnel re-
flection. Then a step size s is chosen statistically by
using®

s = _ln(g)/(ﬂ'a + Ms): (1)

where £is a random number equally distributed between 0
and 1 (0 < ¢ =1). The photon packet loses its weight
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partially at the end of each step as a result of absorption.
The amount of weight loss is the photon weight at the be-
ginning of the step multiplied by (1 — a), where a is the
albedo ws/(ito + us). The photon with the remaining
weight will be scattered. A new photon direction is sta-
tistically determined by the Henyey-Greenstein phase
function according to the anisotropy factor g.° Then a
new step size is generated by Eq. (1), and the process is
repeated.

If the photon packet crosses the surface boundary into
the ambient medium, the photon weight contributes to the
reflectance R,..(r). If the photon packet reaches a posi-
tion lower than the critical plane and the photon trajectory
points downward (positive z-directional cosine) after a new
photon direction is statistically determined, then the pho-
ton packet is ready to convert into an isotropic photon
source. Otherwise, the Monte Carlo simulation continues.

Similarity relations'® are invoked to convert the photon
packet into an isotropic photon source. The similarity re-
lations allow conversion from the anisotropic scatterers
into isotropic scatterers with a reduced scattering coeffi-
cient u,’ equal to w,(1 — g), while the absorption coeffi-
cient is kept the same. A fixed step of 1 mfp’, which is
the mean free path for the converted isotropic scattering
medium, is moved. At the end of this step, the photon
packet interacts with the isotropic scattering medium ac-
cording to an albedo o' equal to p,/(ue + ps'). After ab-
sorption, the new photon weight becomes the weight at the
beginning of the step multiplied by the transport albedo o’
and will experience scattering. After this scattering
event, the photon packet becomes isotropic, and the weight
of the photon packet is recorded into the source function
S(r, z), which is guaranteed to be zero above the critical
plane. Because of the stochastic nature of the Monte Carlo
simulation, multiple photon-packet (V) simulations are
necessary for meaningful results to be obtained.

Diffusion theory [Eqs. (2)-(9)]” computes the reflec-
tance that is due to an isotropic point source located below
the critical plane to yield an impulse response. The
recorded source function S(r,z) is taken as the photon
source, and these impulse responses weighed by the
source function S(r, z) are integrated to obtain the diffuse
reflectance Ry (r).

The diffuse reflectance at (r,6,z = 0) from a point
source at (+',0',2') is

R(r—r,0 — 6,2

_1 o + 1\ exp(—perrds)
4’7T Fett d1 d12

+ (2 + 2zb)<ﬂfeff + _1_>gxp(—_'u;£f.@ - (@)
ds ds

The diffusion theory added an imaging source of the origi-
nal point source about the imaging plane at z = —z; to
satisfy the boundary condition, where 2z, is

Zp = ZAD, (3)

where A is related to the internal reflection r;, When the
boundary has matched refractive indices, A = 1; other-
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wise, A can be estimated by
A=Q1A+r)/1-r)), ¢
where r; is®
ri = —1.440n.47% + 0.710n4"" + 0.668 + 0.06367n., (5)

and D is the diffusion constant

D= 1/{3[/~La + ,u's(]- - g)]} (6)
In Eq. (2), pex is the effective attenuation coefficient
Meff = {3I~‘la[ﬂ'a + ,Urs(l - g)]}llz- (7)

The distance d, between the point of observation at
(r,6,z = 0) and the point source at (+',#, 2') is given by

dy=[r*+ r? - 2rr'cos@@ — &) + 2'*]'2, (€)]

and the distance d, between the point of observation at
(r,6, 2 = 0) and the image point source at (+',8', —2z' — 2z;)
outside the medium is given by

do=[r®+ r'? — 2rr'cos(@ — ¢') + (2’ + 2z,)2]"2. (9)

When the Monte Carlo step of the hybrid simulation is
finished, the source function S(r, z) gives the total photon
weight in a grid element and may be converted into proba-
bility per unit volume S,(r, 2), which is called source den-
sity. The diffuse reflectance resulting from the
distributed source Su(r, 2) is calculated by

© ro 2
Ryee(r) = j f Sa(r',2")YR(r — r',—¢',2")r'dodridz’.
0 Jo Jo
(10)

Because of its cylindrical symmetry, the diffuse reflec-
tance Rgar(r) is independent of the azimuthal angle 6.
Therefore we conveniently choose the observation point at
6 = 0; thus the term 6 — ¢’ is written —¢' in Eq. (10).
The final diffuse reflectance will be the sum of the reflec-
tances computed by the initial Monte Carlo step and the
subsequent diffusion-theory step

Ry(r) = Rue(r) + Ryge(r). (11)

COMPUTATION

A grid system is set up on the cylindrical coordinate sys-
tem for scoring the numerical quantities for this simula-
tion. The grid lines are homogeneously spaced in the r
and z directions. The number of grid elements in the r
direction and the z direction are N,’ and N’, respectively;
and the grid separations along the r and the z coordinates
are Ar' and Az’, respectively. The center coordinates of
the ith r grid element and jth z grid element are r;’ and
z;', respectively:

r = (i + 0.5)Ar, 12)
z' = (j + 0.5)Az" (13)
For this work the grid elements in the z direction need

only to be set up for z = Z., because all the nonzero
sources are in the range z = Z,. However, we use grid
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lines for z = 0 because of simplicity and possible future
extension of this model to physical quantities inside the
medium.

At the end of the Monte Carlo step, R,..(r) gives the total
photon weight reflected into an annulus. We convert the
photon weight into reflectance (probability per unit area)
by dividing it by the total number of launched photon
packets (V) and the area of the annulus (27r;/Ar).

The raw source function S(r;', ;") is converted into the
source-density function S;(r/, 2;) by

Sq(ri', z") = S(r/', 2/')/(AV,N), (14)

where AV; is the grid volume confined by the ith r grid
element (an annulus) and the jth z grid element,

AV, = 27rr/ Ar'AZ'. (15)
Substituting Eq. (15) into Eq. (14), one obtains
Sa(ri,z') = S(ri, 2{")/@ar/Ar'AzN). 16)

The grid system used to score the source term S(r, z) is
used also to compute the integration over r and 2’ in
Eq. (10). The symmetry of the integration over ' is used
to lower the upper limit from 27 to m. Therefore R (1)
is computed by the following equation, in terms of the
source density S;(r, 2):

N/-2 Ny-2
Rug(r) = 2, X Sa(r/,z)r/Ar'Az'2
=0 j=o
X f R(r —r/,—-0,2/)d0'" amn
0

Note that the last grid elements in each direction are not
used in the summation. Only a limited number of grid
elements in each direction can be specified, but the step
size for the Monte Carlo step has no bound because of the
logarithmic operation [Eq. (1)]; therefore the location of a
photon packet may extend beyond the grid system. In
this case we score the quantities into the last grid element
in the direction of the overflow® but do not use the last
grid elements in the reflectance computation in Eq. (17).
This overflow gives an error that is negligibly small if the
grid system is sufficiently large.
Substituting Eq. (16) into Eq. (17), one obtains

N/'-~2 N;'-2

Rug( = > > S(ril,zjl)/(WN)f R(r - r/,—0,2)d0.
i=0  j=0 0
(18)

Equation (18) indicates that we do not need to convert the
source function S(r,2) to the source-density function
S4(r, z) for use in Eq. (17). The use of S(r, z) in Eq. (18) is
sufficient, which saves computational time.

The integration over ¢ in Eq. (18) was done with Gauss-
ian quadratures,’® where only 10 function evaluations are
required. The sum of Rg(r) and R,.(r) gives the final
diffuse reflectance R (r).

Both the pure Monte Carlo simulation and the hybrid
model are implemented in American National Standards
Institute (ANSI) Standard C, which makes the program
portable to any machine that supports ANSI Standard C.
The pure Monte Carlo simulation program has been suc-
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Fig. 2. Contour plot of the source term Sy(r, 2) (in em ™) for dif-
fusion theory after the Monte Carlo simulation step of 100,000
photon packets in the hybrid model. The optical parameters of
the medium are po =1 ecm™, p, =100 cm™, g = 0.9, ra = 1.
The grid separations for the hybrid model in the r and the z di-
rections are 5 X 10~% cm and 3 X 107 cm, respectively; and the
number of grid elements is 100 in both directions. Note that we
intentionally plot versus r in both directions symmetrically, al-
though r is always greater than or equal to zero in the coordinate
system.

cessfully tested on Macintoshes, IBM PC and compatibles,
and three types of workstation: Sun SPARCstation 2,
Silicon Graphics IRIS workstations, and IBM RISC/6000
POWERstation 320. The pure Monte Carlo simulation
program for multilayered turbid media and the corre-
sponding convolution program can be obtained by contact-
ing the authors of this paper.

RESULTS AND DISCUSSION

An example of the source term S;(r, 2} is shown in Fig. 2.
The critical depth was chosen to be 1 mfp’, where 1 mfp’ is
approximately 9.9 X 1072 cm in this case. Most of the
source strength is concentrated in the neighborhood of
z = 2 mfp', whereas the overall pattern is heart shaped.
The grid separations in the r and the z directions were
5 X 107 ¢m and 8 X 1072 cm, respectively, and the num-
ber of grid elements was 100 in both directions. This
grid system turned out to be sufficient in size because the
source terms in the elements around the edge of the grid
system were negligible.

An example of the final diffuse reflectance Ry(r) is
shown in Fig. 3, where the boundary has matched refrac-
tive indices. The results from the pure Monte Carlo
simulation and the hybrid model agree. If 100,000 photon
packets are used in both models, the hybrid model for the
medium with this set of optical parameters is about 7
times faster than the pure Monte Carlo simulation. The
solid curve with open circles is the diffuse reflectance
scored during the Monte Carlo step of the hybrid model
R,,.(r), which is substantially lower than the final diffuse
reflectance Ry(r) = Rm.(r) + Ra(r). The comparison
between R,.(r) and R;(r) illustrates the contributions of
each step of the hybrid model.

To gain the maximum speed advantage of the hybrid
model without unacceptable error, we want to stop the
Monte Carlo simulation step of the hybrid model as soon
as possible, which can be accomplished by choosing a shal-
low critical depth Z,, because photons will reach the criti-
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cal depth and be converted into isotropic point sources
sooner. However, the shallower the Z,, the poorer the dif-
fusion approximation; therefore there is a trade-off in the
choice of the critical depth. It is obvious that the deeper
the critical depth Z., the larger the contribution to the
diffuse reflectance from the Monte Carlo step. If Z, is
infinite, the hybrid model reduces to a pure Monte Carlo
simulation, because all photons will be either absorbed or
reflected during the Monte Carlo simulation step of the
hybrid model, and the source term S(r,z) will be zero;
hence the diffusion step will contribute nothing to the fi-
nal reflectance.

The computational time of three-dimensional integra-
tion is not negligible and can be shortened if the integra-
tion in Eq. (10) over the r' and the 2’ coordinates is
implemented by using the extended trapezoidal method
instead of by summing over the original grid elements, as
in Eq. @7). This approach has been used for convolution
over photon beams from the impulse response for an infi-
nitely narrow beam,® but for this hybrid model it remains
to be investigated. As an example of the computational
time dedicated to each step of the hybrid model, the ratio
between the time for computing the three-dimensional in-
tegral and the time for computing the Monte Carlo simu-
lation step of the hybrid model is approximately 0.57 when
we compute the diffuse reflectance with optical parame-
ters po =1 em™, p, =100 cm™’, g = 0.9, and n,a =1
and with 100,000 photon packets. The speed advantage
can be enhanched further when only several observation
points need to be evaluated for diffuse reflectance, which
will save computational time in the diffusion-theory step.
For example, the “optimeter” built by Wilson et al*® to
investigate photodynamic sensitizers uses only 10 optical
fiber collectors.

The speed of the hybrid model is sensitive to the value
of g but not to the absorption and scattering coefficients
of the medium, because the average number of steps that
photons take to get to the critical depth is the dominant
factor affecting speed. The mean step size in the Monte
Carlo step of the hybrid model is 1 mfp. If the critical
depth Z, is set to 1 mfp’, the mean number of steps for
photons to get to Z. deep is related to 1 mfp/1 mfp =
1/(1 — g) when p, << p;(1 — g); therefore the speed is
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Fig. 3. Comparison between diffuse reflectances from hybrid
model and pure Monte Carlo simulation (both with 100,000 pho-
ton packets) for an index-matched boundary. The solid curve
with open circles is the contribution from the Monte Carlo simu-
lation part of the hybrid model, Rm.(r). The optical parameters
and the computation settings are described in the caption for
Fig. 2.
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independent of absorption and scattering coefficients. To
demonstrate this, we conducted hybrid simulations of
100,000 photon packets for two sets of optical parameters:
(@) po =01l cm™ and (b) p, = 1 em™}; and p, = 100 cm™,
g = 0.9, and n.q =1. The two simulations require al-
most the same amount of computational time. With a
larger anisotropy factor g we expect a longer computation,
because photons would take more steps to reach the criti-
cal depth. The detailed speed profile as a function of op-
tical parameters has yet to be studied.

The speed of pure Monte Carlo simulation is sensitive
to absorption and scattering coefficients besides anisot-
ropy.”® With the same anisotropy factor g, the smaller the
absorption coefficient compared with the scattering coef-
ficient, the slower the Monte Carlo simulation, because
photons can propagate longer before being terminated.
The pure Monte Carlo simulations for the two sets of opti-
cal properties in the last paragraph revealed that compu-
tation of case (b) (1, = 1 cm™) is approximately 2.5 times
faster than that of case (@) (4, = 0.1 cm™). When the
boundary has mismatched refractive indices, the Monte
Carlo simulation also is slower compared with that for a
medium with matched refractive indices at the boundary,
because photons can be reflected back into the medium
and travel longer inside the turbid medium.

Therefore, for a given anisotropy, when the ratio be-
tween the absorption coefficient and the scattering coeffi-
cient decreases, the speed advantage of the hybrid model
over the pure Monte Carlo simulation increases. For ex-
ample, the hybrid simulation for case (a) described above
is more than 20 times faster than the pure Monte Carlo
simulation. In the case of pure scattering with no ab-
sorption, the pure Monte Carlo simulation takes an ex-
tremely long time to finish the simulation, because the
only way for a photon packet to be terminated is for it to
be lost as reflectance; however, some photons can propa-
gate deeply into the medium and take a long time to re-
turn. In contrast, the hybrid model propagates photons
only until they reach the critical depth Z, and have a
downward trajectory.

Because diffusion theory is an approximation and the
hybrid model is based on diffusion theory, the hybrid
model is an approximation. Therefore we do not expect
the hybrid model to produce the same results as the pure
Monte Carlo simulation unless the critical depth Z. ap-
proaches infinity.

To analyze the difference between the hybrid model and
the pure Monte Carlo simulation, we made ten simula-
tions of 100,000 photon packets with both models for a me-
dium with optical parameters u, = 1 em™, u, = 100 cm™,
g =009, and n,q =1. The average diffuse reflectances
and their standard deviations were then computed. The
relative errors for both models are shown in Figs. 4(a) and
4(b). For the pure Monte Carlo simulation, the profile of
the relative error increases with the radius r, because
fewer photons are scored into the grid annulus at larger
radius r. Although the area of the annulus increases lin-
early with the radius r, the probability of photons being
scored into the annulus decreases approximately exponen-
tially for large r. In contrast, the relative error of the
hybrid model shows no systematic trend. For most points
of r, the differences between the average diffuse reflec-
tances from the two models are within 1 standard devia-

L. Wang and S. L. Jacques

tion of the pure Monte Carlo simulation; and for all points
of r, the differences are within 2 standard deviations, as
shown in Fig. 4(c). The difference between the average
diffuse reflectances of the two types of simulations is
within 6% of the average results from the pure Monte
Carlo simulations [Fig. 4(d)]. If we want to observe the
systematic difference between the two models for a given
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Fig. 4. Error of hybrid model with respect to pure Monte Carlo
simulation. Ten runs of 100,000 photon packets were completed
for each model. The optical parameters and the grid system are
given in the caption for Fig. 2. The average diffuse reflectances
of 10 runs are denoted by M,y and H,,, for the pure Monte Carlo
simulation and for that of the hybrid model, respectively, and the
corresponding standard deviations are denoted M and Hy. (a)
Relative error of the pure Monte Carlo simulation, (b) relative
error of the hybrid model, (c) difference between the average val-
ues of the hybrid model and of the pure Monte Carlo model di-
vided by the standard deviation of the pure Monte Carlo
simulation, (d) difference between the average values of the hy-
brid model and of the pure Monte Carlo model divided by the
average values of the pure Monte Carlo simulation.
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Fig. 6. Comparison of diffuse reflectances from the hybrid
model (solid diamonds) and from the pure Monte Carlo simulation
(open squares) with varied absorption coefficients while other op-
tical parameters are kept constant (100,000 photon packets are
used for both simulations). The optical parameters of the me-
dium are p, = 100 cm™, g = 0.9, and 7n,q = 1; and varied p, =
0.1, 1, and 10 cm™?, respectively. The grid system is the same as
in Fig. 2.

critical depth, simulations with substantially more photon
packets will be necessary.

Because diffusion theory works for media with bounda-
ries of either matched or mismatched refractive indices,’
we expect the hybrid .model to work for mismatched
boundaries, too. Figure 5 shows an example for a medium
with optical parameters p, =1 em™, p, = 100 cm™, g =
0.9, and n.q = 1.37, where Z, still is set to 1 mfp’ and
100,000 photon packets were computed. The hybrid
model still agrees well with the pure Monte Carlo simula-
tion and is about 8 times faster than the pure Monte Carlo
simulation.

Diffusion theory is valid only when the absorption coef-
ficient is much less than the reduced scattering coeffi-
cient. Because the hybrid model uses diffusion theory,
this restriction also applies to the hybrid model. To illus-
trate this point, with given scattering coefficient w, an-
isotropy factor g, and a boundary with matched refractive
indices, we computed the diffuse reflectances for three
different absorption coefficients by both pure Monte Carlo
simulation and by hybrid model (Fig. 6). For u, =
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0.1 em™ and p, = 1 cm™, the two models have a high de-
gree of agreement. However, the hybrid model does not
agree with the pure Monte Carlo simulation when u, =
10 em™!, which is comparable to the reduced scattering co-

efficient p,' = 10 em™,

CONCLUSIONS

A hybrid model of Monte Carlo simulation and diffusion
theory for light reflectance by turbid media has been im-
plemented in Standard C. The hybrid model combines
the accuracy advantage of Monte Carlo simulation and the
speed accuracy of diffusion theory and is valid when the
absorption coefficient is much less than the reduced scat-
tering coefficient, which is exactly where the pure Monte
Carlo simulation is slowest. The key to the speed advan-
tage of the hybrid model is to stop the slow Monte Carlo
simulation step as soon as possible and let diffusion the-
ory handle the deep photon propagation. The key to the
accuracy advantage of the hybrid model is to convert the
infinitely narrow photon beam into isotropic photon-point
sources deep inside the medium so that diffusion theory
can be used with acceptable accuracy.

Although this research considers only the infinitely nar-
row photon-beam response, the hybrid model can be
adapted easily so that it can compute the diffuse reflec-
tance of arbitrary photon sources inside or outside the me-
dium, e.g., a tilted infinitely narrow photon beam or a
buried anisotropic photon source. The hybrid model also
can be applied to the computation of the fluorescence
spectrum where the fluorescence is isotropic by nature.
In a word, the hybrid model may be able to solve a large
number of practical problems. The technique of transi-
tion from the Monte Carlo step to the diffusion-theory
step in the hybrid model also should be applicable to simi-
lar computations.
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